
T2.1

Software

2

Technology Guides

T2.1 Software Fundamentals and Types

T2.2 Application Software

T2.3 Systems Software

T2.4 Programming Languages

T2.5 Software Development and CASE Tools

T2.6 Software Issues and Trends

T1 Hardware
T2 Software
T3 Data and Databases
T4 Telecommunications
T5 The Internet and the Web
T6 Technical View of System Analysis and Design

Technology
Guide

�

T2.2 Technology Guide Software

Computer hardware cannot perform a single act without instructions. These

instructions are known as software or computer programs. Software is at the heart

of all computer applications. Computer hardware is, by design, general purpose.

Software, on the other hand, enables the user to tailor a computer to provide spe-

cific business value.

T2.1 Software Fundamentals and Types

SOFTWARE
FUNDAMENTALS

Software consists of computer programs, which are sequences of instructions for the

computer. The process of writing (or coding) programs is called programming, and

individuals who perform this task are called programmers.
Unlike the hardwired computers of the 1950s, modern software uses the

stored-program concept, in which stored software programs are accessed and their

instructions are executed (followed) in the computer’s CPU. Once the program has

finished executing, a new program is loaded into the main memory and the com-

puter hardware addresses another task.

Computer programs included documentation, which is a written description of

the functions of the program. Documentation helps the user operate the computer

system and helps other programmers understand what the program does and how

it accomplishes its purposes. Documentation is vital to the business organization.

Without it, if a key programmer or user leaves, the knowledge of how to use the pro-

gram or how it is designed may be lost.

TYPES OF
SOFTWARE

There are two major types of software: application software and systems software.

Application software is a set of computer instructions, written in a programming

language. The instructions direct computer hardware to perform specific data or

information processing activities that provide functionality to the user. This func-

tionality may be broad, such as general word processing, or narrow, such as an

organization’s payroll program. An application program applies a computer to a

need, such as increasing productivity of accountants or improved decisions regard-

ing an inventory level. Application programming creates or modifies and improves

application software.

Systems software acts primarily as an intermediary between computer hard-

ware and application programs, and knowledgeable users may also directly manip-

ulate it. Systems software provides important self-regulatory functions for computer

systems, such as loading itself when the computer is first turned on, as in Windows
Professional; managing hardware resources such as secondary storage for all appli-

cations; and providing commonly used sets of instructions for all applications to use.

Systems programming either creates or modifies systems software.

Application programs primarily manipulate data or text to produce or pro-

vide information. Systems programs primarily manipulate computer hardware

resources. The systems software available on a computer provides the capabilities

and limitations within which the application software can operate. Figure T2.1

shows that systems software is a necessary intermediary between hardware and

application software; the application software cannot run without the systems

software.

Both application software and systems software are written in coding schemes

called programming languages, which are also presented in this guide.

T2.2 Application Software T2.3

Application Software

Systems Software

Hardware

Figure T2.1 Systems
software serves as
intermediary between
hardware and functional
applications.

Because there are so many different uses for computers, there are a correspondingly

large number of different application programs. Application software includes pro-

prietary application software and off-the-shelf application software. Custom appli-
cation software addresses a specific or unique business need for a company. This

type of software may be developed in-house by the organization’s information sys-

tems personnel or it may be commissioned from a software vendor. Such specific

software programs developed for a particular company by a vendor are called

contract software.
Alternatively, off-the-shelf application software can be purchased, leased, or

rented from a vendor that develops programs and sells them to many organizations.

Off-the-shelf software may be a standard package or it may be customizable. Spe-

cial purpose programs or “packages” can be tailored for a specific purpose, such as

inventory control or payroll. The word package is a commonly used term for a com-

puter program (or group of programs) that has been developed by a vendor and is

available for purchase in a prepackaged form.

If a package is not available for a certain situation, it is necessary to build the

application using programming languages or software development tools. There are

also general-purpose application programs that are not linked to any specific business

task, but instead support general types of information processing. The most widely

used general-purpose application packages are spreadsheet, data management, word

processing, desktop publishing, graphics, multimedia, and communications.

Some of these general-purpose tools are actually development tools.That is, you

use them to construct applications. For example, you can use Excel to build decision

support applications such as resource allocation, scheduling, or inventory control.

You can use these and similar packages for doing statistical analysis, for conducting

financial analysis, and for supporting marketing research.

Many decision support and business applications are built with programming lan-

guages rather than with general-purpose application programs. This is especially true

for complex, unstructured problems. Information systems applications can also be

built with a mix of general-purpose programs and/or with a large number of develop-

ment tools ranging from editors to random number generators. Of special interest are

the software suites, for example, Microsoft Office. These are integrated sets of tools

that can expedite application development. Also of special interest are CASE tools

and integrated enterprise software, which are described later in the guide.

T2.2 Application Software

T2.4 Technology Guide Software

Student Name

Carr, Harold

Ford, Nelson

Lewis, Bruce

Snyder, Charles

Average

73

92

86

63

78.5

95

90

88

71

86.0

90

81

98

76

86.25

258

263

272

210

250.75

B

B

A

C

Exam 1 Exam 2 Exam 3 Total Points Grade

Figure T2.2 Sample
calculation of student
grades in a spreadsheet.

GENERAL-PURPOSE
APPLICATION
PROGRAMS

Spreadsheets. Spreadsheet software transforms a computer screen into a ledger

sheet, or grid, of coded rows and columns (see Figure T2.2). Users can enter numeric

or textual data into each grid location, called a cell. In addition, a formula or macro

can also be entered into a cell to obtain a calculated answer displayed in that cell’s

location. The term macro refers to a single instruction or formula that combines a

number of other simpler instructions.A user-defined macro can enhance and extend

the basic instructions and commands that are furnished with the spreadsheet.

Spreadsheet packages include a large number of already-programmed statistical,

financial, and other business formulas. They are known as functions.

Computer spreadsheet packages are used primarily for decision support such as

in financial information processing (e.g., such as income statements or cash flow

analysis). However, they also are relevant for many other types of data that can be

organized into rows and columns. Spreadsheets are usually integrated with other

software, such as graphics and data management, to form software suites. Therefore,

they may be called integrated packages.

Data Management. Data management software supports the storage, retrieval,

and manipulation of data. There are two basic types of data management software:

simple filing programs patterned after traditional, manual data filing techniques,

and database management systems (DBMSs) that take advantage of a computer’s

extremely fast and accurate ability to store and retrieve data.

A file is a collection of related records organized alphabetically, chronologically,

hierarchically in levels, or in some other manner. File-based management software

is typically simple to use and often very fast, but it is difficult and time-consuming

to modify because of the structured manner in which the files are created.

Database management software was addresses the problems of file-based man-

agement software. A database is a collection of files serving as the data resource for

computer-based information systems. In a database, all data are integrated with estab-

lished relationships. An example of database software is provided in Figure T2.3.

An example for corporate use is the new Oracle Database 10g, which is packed

with features designed to make the database administrator’s (DBA)’s job easier,

either by completely automating tasks or by transferring control of important func-

tions to the server. This allows DBAs to manage large, complex environments with

very little effort.

Word Processing. Word processing software allows the user to manipulate text

rather than just numbers. Modern word processors contain many productive writing

features.A typical word processing software package consists of an integrated set of

programs, including an editor, a formatting program, a print program, a dictionary,

a thesaurus, a grammar checker, a mailing list program, and integrated graphics,

charting, and drawing programs. WYSIWYG (What You See Is What You Get)

word processors have the added advantage of displaying the text material on the

screen exactly—or almost exactly—as it will look on the final printed page (based

on the type of printer connected to the computer).

Desktop Publishing. Desktop publishing is the use of computers to design and

print professional-quality typeset documents.A desktop publishing software such as

PageMaker or QuarkXpress is much more versatile for this purpose than a word

processor. Photographs, diagrams, and other images can be combined with text,

including multiple typefaces, to produce a finished, camera-ready document and

preview the appearance of the printed document.

Graphics. Graphics software allows the user to create, store, and display or print

charts, graphs, maps, and drawings. Graphics software enables users to absorb more

information more quickly, to spot relationships and trends in data more easily, and

to make points more emphatically. There are three basic categories of graphics soft-

ware packages: presentation graphics, analysis graphics, and engineering graphics.

Presentation Graphics. This software allows users to create images, charts,

graphs, and organizational charts. These packages contain drawing tools, presenta-

tion templates, various font styles, spell-checking routines, charting aids, and tools to

aid in assembling multiple images into a complete presentation.

Analysis Graphics. These applications provide the ability to present previously

analyzed data—such as statistical data—in graphic formats like bar charts, line

charts, pie charts, and scatter diagrams. The charts may also include elements of dif-

ferent textures, labels, and headings.

Engineering Graphics. Various engineering software programs are available to

shorten development time of applications and to increase productivity of draftsper-

sons and engineers. Most notable are computer-aided design (CAD) and computer-

aided manufacturing (CAM).

Communications Software. To exchange information, computers utilize comm-
unications software. This software allows computers to exchange data over dedi-

cated or public cables, telephone lines, satellite relay systems, or microwave circuits

(see Technology Guide 4).

T2.2 Application Software T2.5

Figure T2.3 Database
software.

When communications software exists in both the sending and receiving com-

puters, they are able to establish electronic links, code and decode data transmis-

sions, verify transmission errors (and correct them automatically), compress data

streams for more efficient transmission, and manage the transmission of documents.

Communications software establishes the switched routings needed to ensure suc-

cessful “end-to-end” transmissions; it establishes electronic contact (“handshaking”)

between computers, and assures that data will be sent in the proper format and at

the proper speed. It detects transmission speeds and codes, and routes information

to the appropriate hardware. Communications software checks for and handles

transmission interruptions or conflicting transmission priorities.

Remote control software can let a remote user operate a computer as if that user

is sitting in front of it. Representative software includes Symantec’s PcAnywhere,

Netopia’s Timbuktu Pro,AT&T’s WinVNC, and Microsoft NetMeeting, Skype, MSN,

and ICQ.

Speech-Recognition Software. Two categories of speech-recognition software
(also known as voice recognition software) are available today: discrete speech and

continuous speech. Discrete speech recognition can interpret only one word at a time,

so users must place distinct pauses between words.This type of voice recognition can

be used to control PC software (by using words such as “execute” or “print”). But it

is inadequate for dictating a memo, because users find it difficult to speak with meas-

urable pauses between every word and still maintain trains of thought.

Software for continuous speech recognition can interpret a continuing stream of

words. The software must understand the context of a word to determine its correct

spelling, and be able to overcome accents and interpret words very quickly. These

requirements mean that continuous speech-recognition software must have a com-

puter with significantly more speed and memory than discrete speech software.

Many firms and people use speech-recognition software when use of a mouse

and a keyboard is impractical. For example, such software can provide an excellent

alternative for users with disabilities, repetitive strain injuries, or severe arthritis.

Well-known products include IBM’s ViaVoice and Dragon’s Naturally Speaking 8.

Text-to-Speech. Text-to-speech systems convert computer text into voice.A text file

is sent through special software that converts it into spoken words, which are output

through speakers. Blind people use text-to-speech systems to listen to computer-

based documents. People who cannot talk use text-to-speech systems to choose their

words and have their computer speak for them.

Wireless phone companies are using text-to-speech systems to develop voice

portals. Users call a phone number at the voice portal to hear a wide variety of real-

time data, such as local weather, stock quotes, and traffic updates. This information

is retrieved directly from Internet-based information systems and converted to

speech (see tellme.com).

Software Suites. Software suites are collections of application software packages

in a bundle. Software suites can include word processors, spreadsheets, database

management systems, graphics programs, communications tools, and others.

Microsoft Office, and Lotus SmartSuite are widely used software suites for personal

computers. Each of these suites includes a spreadsheet program, word processor,

database program, and graphics package with the ability to move documents, data,

and diagrams among them. In addition to end-user-type suites, such as described

above, there are software kits for system developers, such as CASE tools, which are

described later.

T2.6 Technology Guide Software

Workgroup Software. Workgroup software, or groupware, helps groups and

teams work together by sharing information and by controlling workflow within the

group. The use of this type of software has grown because of a need for groups to

work together more effectively, coupled with technological progress in networking

and group-support products.

Many groupware products are designed to support specific group-related tasks

such as project management, scheduling (called calendaring), workflow, and retriev-

ing data from shared databases. For example, Lotus Notes is designed as a system

for sharing text and images, and contains a data structure that is a combination of a

table-oriented database and an outline. Using Lotus Notes, groups of users working

together on projects are able to see each other’s screens, share data, and exchange

ideas and notes in an interactive mode. Such capabilities increase the productivity

of work groups.

Other groupware products focus primarily on the flow of work in office settings.

These products provide tools for structuring the process by which information for a

particular task is managed, transferred, and routed. Other groupware systems are

basically e-mail systems extended by classifying messages and using those classifica-

tions to control the way messages are handled. Of special interest are group decision
support systems (GDSSs), which are presented in Chapter 12.

Other Application Software. There exist hundreds of other application software

products. Of special interest to business managers are:

Middleware. Internet applications designed to let one company interact with other

companies are complex because of the variety of hardware and software with which

they must be able to work. This complexity will increase as mobile wireless devices

begin to access company sites via the Internet. Middleware is software designed to

link application modules developed in different computer languages and running on

heterogeneous platforms, whether on a single machine or over a network. Middle-

ware keeps track of the locations of the software modules that need to link to each

other across a distributed system and manages the actual exchange of information.

Organizationwide Applications. Enterprise software consists of programs that

manage the vital operations of an organization (enterprise), such as supply-chain

management (movement of raw materials from suppliers through shipment of fin-

ished goods to customers), inventory replenishment, ordering, logistics coordina-

tion, human resources management, manufacturing, operations, accounting, and

financial management. Some common modules of enterprise applications software

are payroll, sales order processing, accounts payable/receivable, and tax accounting.

Enterprise software vendors are producing software that is less expensive,

based on industry standards, compatible with other vendors’ products, and easier to

configure and install. The largest vendors—Systeme Anwendung Produkte (SAP)

AG, Oracle Corporation, PeopleSoft Inc., and Computer Associates—are develop-

ing software programs that make the jobs of business users and IT personnel easier.

Presence Software. Presence technology can detect when you’re online and what

kind of device you’re using. It has its roots in instant messaging (IM). When you log

on to an IM service, your arrival is immediately announced to a list of other users

you’ve selected to be alerted to your online presence.

Schematics Software. Microsoft Visio can create network and telecommunications

schematics, space plans, and even detailed HVAC layouts, to quickly communicate

T2.2 Application Software T2.7

just what goes where, when, and how. Besides this, it can help you draw many dia-

grams about systems analysis and design including DFD, ERD, UML and also help

you complete forward-engineering as well as backward-engineering tasks.

Examples of New Application Software. New application software is being devel-

oped and marketed each year. Examples of such software products are the following.

• United Internet Technologies (UIT) has developed a solution that allows you to

maximize the advantages of both CD-ROMs and the Internet in direct market-

ing. This solution is called digitally integrated video overlay (Divo) software,

which blends video from a CD-ROM into a Web site, providing fully integrated,

full-screen, real-time video on the Internet without a high-speed connection. The

Divo CD-ROM installs proprietary software onto the user’s computer drive that

allows Divo to take its cues from the Web site, enabling you to control the con-

tent a viewer sees according to the day of the week or time of day or even the

month. The information on the CD is not updated from the Web site; everything

is there on the CD when it is delivered into the user’s hands. The coding from the

Web site simply instructs the CD what to play and when.

• Microsoft’s software architecture, called the Dynamic Systems Initiative, supports

the concept of autonomic computing. It attempts to provide a software environ-

ment for more automated and efficient and less complex data centers. Initially, they

will have new tools in Windows Server 2003, which gives more control over CPU

and memory utilization, for managing storage area networks. Next will be technol-

ogy called Automated Deployment Service (ADS) that will support the intelligent

provisioning of Windows and related software for faster setup on servers.

• A Swedish company, Cycore, has provided HMV.com interactive three-dimensional

software called Cult3D. With it, shoppers can now electronically flip open the CD

cover and zoom in to read the lyrics and liner notes. Cult3D is a multiplatform 3-D

rendering engine that allows companies to easily build and display high-quality

interactive 3-D animations of products on their Web sites. Users can spin items

around, and zoom in on product details, viewing objects from any perspective with

the click of a mouse. Additional examples of software applications are provided

throughout the book.

• In the past, all automotive electronic systems platforms were missing the important

elements of robustness and flexible software architecture. These characteristics

would have enabled large automobile manufacturers to easily tailor their systems

for each brand or vehicle program and offer their customers a high degree of per-

sonalization. Today, some solutions are available. For example, Ford’s Vehicle Con-

sumer Services Interface (VCSI) is an in-vehicle computing platform. It is based on

Java and designed to manage effectively traditional vehicle systems and functions.

• The National Science Foundation’s TeraGrid (teragrid.org) has a massive research

computing infrastructure that combines five large computing and data manage-

ment facilities and supports many academic institutions and research laboratories

in their endeavors.The TeraGrid is one of the largest grid-based, high-performance

computing (HPC) infrastructures ever created.

T2.8 Technology Guide Software

Systems software controls and supports the computer hardware and its information

processing activities. Systems software also facilitates the programming, testing, and

debugging of computer programs. It is more general than applications software and

T2.3 Systems Software

is usually independent of any specific type of application. Systems software pro-

grams support application software by directing the basic functions of the computer.

For example, when the computer is turned on, the initialization program (a systems

program) prepares and readies all devices for processing. Other common operating

systems tasks are shown in Table T2.1.

Systems software can be grouped into three major functional categories:

• System control programs are programs that control the use of hardware, software,

and data resources of a computer system during its execution of a user’s informa-

tion processing job.An operating system is the prime example of a system control

program.

• System support programs support the operations, management, and users of a com-

puter system by providing a variety of services. System utility programs, performance

monitors, and security monitors are examples of system support programs.

• System development programs help users develop information processing pro-

grams and procedures and prepare user applications. Major development programs

are language compilers, interpreters, and translators.

T2.3 Systems Software T2.9

TABLE T2.1 Common Operating Systems Tasks

• Monitoring performance

• Correcting errors

• Providing and maintaining the user interface

• Starting (“booting”) the computer

• Reading programs into memory

• Managing memory allocation to those programs

• Placing files and programs in secondary storage

• Creating and maintaining directories

• Formatting diskettes

• Controlling the computer monitor

• Sending jobs to the printer

• Maintaining security and limiting access

• Locating files

• Detecting viruses

• Compressing data

SYSTEM CONTROL
PROGRAMS

The most important system control programs are described below.

Operating Systems. The main component of systems software is a set of programs

collectively known as the operating system. The operating system, such as Windows

XP, supervises the overall operation of the computer, including monitoring the com-

puter’s status, handling executable program interruptions, and scheduling opera-

tions, which include controlling input and output processes.

Mainframes and minicomputers contain only one CPU, but they perform sev-

eral tasks simultaneously (such as preparation and transfer of results). In such cases,

the operating system controls which particular tasks have access to the various

resources of the computer.At the same time, the operating system controls the over-

all flow of information within the computer.

On a microcomputer, the operating system controls the computer’s communi-

cation with its display, printer, and storage devices. It also receives and directs

inputs from the keyboard and other data input sources. The operating system is

designed to maximize the amount of useful work the hardware of the computer

system accomplishes.

Programs running on the computer use various resources controlled by the

operating system. These resources include CPU time, primary storage or memory,

and input/output devices. The operating system attempts to allocate the use of these

resources in the most efficient manner possible.

The operating system also provides an interface between the user and the hard-

ware. By masking many of the hardware features, both the professional and end-

user programmers are presented with a system that is easier to use.

Portability, a desirable characteristic of operating systems, means that the same

operating system software can be run on different computers. An example of a

portable operating system is UNIX.Versions of UNIX can run on hardware produced

by a number of different vendors. Examples include Linux, Xenix, and Sun’s Solaris.

However, there is no one standard version of UNIX that will run on all machines.

Operating System Functions. The operating system performs four major func-

tions in the operation of a computer system: job management, resource manage-

ment, server consolidation, and data management.

1. Job management is the preparing, scheduling, and monitoring of jobs for contin-

uous processing by the computer system. A job control language (JCL) is a spe-

cial computer language found in the mainframe-computing environment that

allows a programmer to communicate with the operating system.

2. Resource management is controlling the use of computer system resources

employed by the other systems software and application software programs

being executed on the computer. These resources include primary storage, sec-

ondary storage, CPU processing time, and input/output devices.

3. Server consolidation is all about creating a simpler, more rational and manage-

able infrastructure. There are four possible consolidation strategies: logical con-

solidation, physical consolidation, workload consolidation, and application con-

solidation. Consolidation also leads to much more flexible, consistent, and

efficient use of resources than distributed servers by allowing customers to strike

the right balance within each server.

4. Data management is the controlling of the input and output of data as well as their

location, storage, and retrieval. Data management programs control the allocation

of secondary storage devices, the physical format and cataloging of data storage,

and the movement of data between primary storage and secondary storage devices.

EVault unveiled iSeries agent, which enables administrators to perform hot

backups online without disrupting service (Schwartz, 2005).

A variety of operating systems are in use today. The operating system used on

most personal computers is some version of Microsoft’s Windows and NT. Many

minicomputers use a version of the UNIX operating system.

Desktop and Notebook Computer Operating Systems. The Microsoft Windows

family is the leading series of desktop operating systems. The MS-DOS (Microsoft
Disk Operating System) was one of the original operating systems for the IBM PC

and its clones.

Windows 95, released in 1995, was the first of a series of products in the Windows
operating system that provided a streamlined GUI by using icons to provide instant

access to common tasks.

Subsequent products in the Microsoft Windows operating system are:

• Windows 98 was not a major upgrade to Windows 95, but did offer minor refine-

ments, bug fixes, and enhancements to Windows 95.

• Windows NT is an operating system for high-end desktops, workstations, and

servers.Windows NT supports software written for DOS and Windows, and it pro-

vides extensive computing power for new applications with large memory and file

requirements. It is also designed for easy and reliable connection with networks

and other computing machinery, and is popular in networked systems.

T2.10 Technology Guide Software

• Windows 2000 is a renamed version of Windows NT 5.0. This operating system

has added security features, will run on multiple-processor computers, and offers

added Internet and intranet functionality.

• Windows XP is the first upgrade to Windows 2000 and has three versions: a

32-bit consumer version, a 32-bit business version, and a 64-bit business version.

Windows XP is the first version of Windows to support Microsoft’s .NET platform.

• Windows Vista was the next major release of the Windows client operating sys-

tem (formerly codenamed “Longhorn”). Windows Vista was to deliver major

improvements in user productivity, important new capabilities for software devel-

opers, and significant advances in security, deployment, and reliability.

UNIX is another operating system that provides sophisticated desktop features,

including multiprocessing and multitasking. UNIX is valuable to business organiza-

tions because it can be used on many different sizes of computers (or different plat-

forms), can support many different hardware devices (e.g., printers, plotters, etc.),

and has numerous applications written to run on it. UNIX has many different ver-

sions. Most UNIX vendors are focusing their development efforts on servers rather

than on desktops, and are promoting Linux for use on the desktop.

Linux is a powerful version of the UNIX operating system that is available to

users completely free of charge. It offers multitasking, virtual memory management,

and TCP/IP networking. Linux was originally written by Linus Torvalds at the Uni-

versity of Helsinki in Finland in 1991. He then released the source code to the world

(called open source software). Since that time, many programmers around the world

have worked on Linux and written software for it. The result is that, like UNIX,

Linux now runs on multiple hardware platforms, can support many different hard-

ware devices, and has numerous applications written to run on it. Linux is becoming

widely used by Internet service providers (ISPs).

Linux is a UNIX-like operating system that was designed to provide personal

computer users with a free or very-low-cost operating system comparable to tradi-

tional more expensive UNIX systems. Linux is a remarkably complete operating sys-

tem, including a graphical user interface, an X Window System, TCP/IP, the Emacs

editor, and other components usually found in a comprehensive UNIX system

(searchopensource.techtarget.com/sDefinition/0,290660,sid39_gci212482,00.html?tra...)
The Macintosh operating system (Mac OS X), for Apple Macintosh microcomput-

ers, is a 32-bit operating system that supports Internet integration, virtual memory man-

agement, and AppleTalk networking. Mac OS X features a new user interface (named

Aqua), advanced graphics, virtual memory management, and multitasking.

Sun Microsystems’ Solaris 10 ships with a set of impressive new features that will

make life easier for system administrators as they work to tailor the security and

resource management of systems under their care. Solaris 10 is free to download and

use, and access to security fixes is also free. Sun sells annual Solaris support contracts

according to the number of CPUs and level of service (eWEEK, 2005, p. 50).

Mobile Device Operating Systems. Operating systems are designed for a variety

of devices. The mobile device operating system market includes embedded Linux,

Microsoft’s Windows CE and Pocket PC,Windows Embedded NT 4.0, and Palm OS

from Palm. Some mobile device operating systems are described below:

• Embedded Linux is a compact form of Linux used in mobile devices. Both IBM

and Motorola are developing embedded Linux for mobile devices.

• Windows CE, a 32-bit operating system, is Microsoft’s information appliance

operating system. Windows CE includes scaled-down versions (known as pocket
versions) of Microsoft Word, Excel, PowerPoint, and Internet Explorer.

T2.3 Systems Software T2.11

• Pocket PC is a version of Windows CE 3.0 specifically designed for personal dig-

ital assistants and handheld computers.

• The Palm operating system was developed by Palm for its PalmPilot handheld

PDAs. Palm OS includes a graphical user interface, and users must learn a styl-

ized alphabet, called Graffiti, to make the device receive handwritten input.

Mainframe Operating Systems. Mainframe computers usually require special-

ized OSs that can handle a large load and that have advanced security features. The

major server operating systems include UNIX, Linux, Windows 2003 Server, and

Novell NetWare.Although some of these are also desktop operating systems, all can

serve as departmental server operating systems because of their strong scalability,

reliability, backup, security, fault tolerance, multitasking, multiprocessing, TCP/IP

networking (Internet integration), network management, and directory services.

Enterprise Server Operating Systems. Enterprise server operating systems

(e.g., IBM’s OS/390, VM, VSE, and OS/400) generally run on mainframes and

midrange systems. Enterprise operating systems offer superior manageability, secu-

rity, stability, and support for online applications, secure electronic commerce, mul-

tiple concurrent users, large (terabyte) databases, and millions of transactions per

day. Enterprise server operating systems also offer partitioning, a method of seg-

menting a server’s resources to allow the processing of multiple applications on a

single system.

Supercomputer Operating Systems. Supercomputer operating systems target

the supercomputer hardware market. Examples of these systems include the Cray

X1’s Unicos, HP-UX and HP’s 2000 K/S/X, and IBM’s AIX (both types of UNIX).

Other manufacturers are Sun, NEC, Silicon Graphics, and Fujitsu. These operating

systems manage highly parallel multiprocessor and multiuser environments.

Graphical User Interface Operating Systems. The graphical user interface (GUI)
is a system in which users have direct control of visible objects (such as icons and

pointers) and actions that replace complex command syntax. The next generation of

GUI technology will incorporate features such as virtual reality, sound and speech,

pen and gesture recognition, animation, multimedia, artificial intelligence, and highly

portable computers with cellular/wireless communication capabilities. The most well-

known GUIs are Microsoft Windows.

The next step in the evolution of GUIs is social interfaces. A social interface is a

user interface that guides the user through computer applications by using cartoon-

like characters, graphics, animation, and voice commands.The cartoonlike characters

can be cast as puppets, narrators, guides, inhabitants, avatars (computer-generated

humanlike figures), or hosts.

Processing Tasks. Operating systems manage processing activities with some task

management features that allocate computer resources to optimize each system’s

assets. The most notable features are described below.

Multiprogramming and Multiprocessing. Multiprogramming involves two or

more application modules or programs placed into main memory at the same time.

The first module runs on the CPU until an interrupt occurs, such as a request for

input. The input request is initiated and handled while the execution of a second

application module is started. The execution of the second module continues until

another interruption occurs, when execution of a third module begins. When the

processing of the interrupt has been completed, control is returned to the program

that was interrupted, and the cycle repeats. Because switching among programs

occurs very rapidly, all programs appear to be executing at the same time.

T2.12 Technology Guide Software

In a multiprocessing system, more than one processor is involved. The proces-

sors may share input/output devices, although each processor may also control some

devices exclusively. In some cases, all processors may share primary memory. As a

result, more than one CPU operation can be carried on at exactly the same time;

that is, each processor may execute an application module or portion of an applica-

tion module simultaneously. Multiprogramming is implemented entirely by soft-

ware, whereas multiprocessing is primarily a hardware implementation, aided by

sophisticated software.

Time-Sharing. Time-sharing is an extension of multiprogramming. In this mode,

a number of users operate online with the same CPU, but each uses a different

input/output terminal. An application module of one user is placed into a partition

(a reserved section of primary storage). Execution is carried on for a given period

of time, a time slice, or until an input/output request (an interrupt) is made. As in

multiprogramming, modules of other users have also been placed into primary stor-

age in other partitions. Execution passes on to another application module at the

end of a time slice and rotates among all users.

Virtual Memory. Virtual memory allows the user to write a program as if primary

memory were larger than it actually is. Users are provided with “virtually” all the

primary storage they need. With virtual memory, all the pages of an application

module need not be loaded into primary memory at the same time. As the program

executes, control passes from one page to another. If the succeeding page is already

in primary memory, execution continues. If the succeeding page is not in primary

memory, a delay occurs until that page is loaded. In effect, primary memory is

extended into a secondary storage device.

Virtual Machine Operating System. A virtual machine is a computer system that

appears to the user as a real computer but, in fact, has been created by the operat-

ing system. A virtual machine operating system makes a single real machine appear

as multiple machines to its users, each with its own unique operating system. Each

user may choose a different operating system for his or her virtual machine. As a

result, multiple operating systems may exist in the real machine at the same time.

A popular virtual machine operating system is IBM’s VM/ESA. A control pro-

gram supervises the real machine and keeps track of each virtual machine’s opera-

tion. The conversational monitoring system (CMS) provides the user with a highly

interactive environment coupled with easier access to translators, editors, and

debugging tools. Of the newest tools, Java’s Virtual Machine is of special interest.

System Support Programs. System utilities are programs that have been written to

accomplish common tasks such as sorting records, merging sets of data, checking the

integrity of magnetic disks, creating directories and subdirectories, restoring acciden-

tally erased files, locating files within the directory structure, managing memory usage,

and redirecting output. These are basic tasks to most OSs and application programs.

TestDrive, for example, allows you to download software; you try it, and TestDrive

helps you either with a payment or with removal of the software. Some hard-disk

clean-up software, like Microsoft’s Disk Defragmenter, also called defraggers or diag-

nostic and Repair tools, can help tidy up the hard disk by packing the files together to

make more continuous room for new files, locating seldom-used files, leftover tempo-

rary files and other space wasters. Norton’s Utilities performs routine housekeeping

tasks on hard drives and on secondary storage devices.

System Performance Monitors. System performance monitors monitor computer

system performance and produce reports containing detailed statistics concerning

T2.3 Systems Software T2.13

the use of system resources, such as processor time, memory space, input/output

devices, and system and application programs.

System Security Monitors. System security monitors are programs that monitor

the use of a computer system to protect it and its resources from unauthorized use,

fraud, or destruction. Such programs provide the computer security needed to allow

only authorized users access to the system. Security monitors also control use of the

hardware, software, and data resources of a computer system. Finally, these programs

monitor use of the computer and collect statistics on attempts at improper use.

System Development Programs. Translating user computer programs written in

source code into object or machine code requires the use of compilers or inter-

preters, which are examples of system development programs. Another example is

computer-aided software engineering (CASE) programs.

T2.14 Technology Guide Software

Programming languages provide the basic building blocks for all systems and appli-

cation software. Programming languages allow people to tell computers what to do

and are the means by which systems are developed. Programming languages are

basically a set of symbols and rules used to write program code. Each language uses

a different set of rules and the syntax that dictates how the symbols are arranged so

they have meaning.

The characteristics of the languages depend on their purpose. For example, if

the programs are intended to run batch processing, they will differ from those

intended to run real-time processing. Languages for Internet programs differ from

those intended to run mainframe applications.

T2.4 Programming Languages

THE EVOLUTION
OF PROGRAMMING
LANGUAGES

The different stages of programming languages over time are called “generations.”

The term generation may be misleading. In hardware generation, older generations

are becoming obsolete and are not used. All software generations are still in use.

They are shown in Figure T2.4 and are discussed next.

Machine Language: First Generation. Machine language is the lowest-level com-

puter language, consisting of the internal representation of instructions and data.This

machine code—the actual instructions understood and directly executable by the

CPU—is composed of binary digits. A program using this lowest level of coding is

called a machine language program and represents the first generation of program-

ming languages. A computer’s CPU is capable of executing only machine language

programs, which are machine dependent. That is, the machine language for one type

of central processor may not run on other types.

Machine

Language

O–1

Long,

difficult

programming

Assembly

Language

Assemble

repetitive

instructions,

shorter

code

Progress

Generations

Machine
Human

Natural

Language

Include

commands,

shorter

code

Procedural

Languages

Nonprocedural

Languages

Application

generators,

commands

specify

results

Intelligent

Languages

Natural

language

processing

1st 2nd 3rd 4th 5th

Figure T2.4 The evolu-
tion of programming
languages. With each
generation progress is
made toward human-like
natural language.

Machine language is extremely difficult to understand and use by programmers.

As a result, increasingly more user-oriented languages have been developed. These

languages make it much easier for people to program, but they are impossible for

the computer to execute without first translating the program into machine lan-

guage. The set of instructions written in a user-oriented language is called a source
program. The set of instructions produced after translation into machine language

is called the object program.

Assembly Language: Second Generation. An assembly language is a more user-

oriented language that represents instructions and data locations by using mnemonics,

or memory aids, which people can more easily use.Assembly languages are considered

the second generation of computer languages. Compared to machine language, assem-

bly language eases the job of the programmer considerably. However, one statement

in an assembly language is still translated into one statement in machine language.

Because machine language is hardware dependent and assembly language programs

are translated mostly on a one-to-one statement basis, assembly languages are also

hardware dependent.

A systems software program called an assembler accomplishes the translation

of an assembly language program into machine language. An assembler accepts a

source program as input and produces an object program as output. The object pro-

gram is then processed into data (see Figure T2.5).

T2.4 Programming Languages T2.15

HIGH-LEVEL
LANGUAGES

High-level languages are the next step in the evolution of user-oriented program-

ming languages. High-level languages are much closer to natural language and

therefore easier to write, read, and alter. Moreover, one statement in a high-level

language is translated into a number of machine language instructions, thereby

making programming more productive.

Procedural Languages: Third Generation. Procedural languages are the next step

in the evolution of user-oriented programming languages. They are also called third-
generation languages, or 3GLs. Procedural languages are much closer to so-called

natural language (the way we talk) and therefore are easier to write, read, and alter.

Moreover, one statement in a procedural language is translated into a number of

machine language instructions, thereby making programming more productive. In

Source

program
CPU

Written by

a programmer

(a)

Converted by

a translator

Ready to run

as machine code

Data CPU

Data are

entered

(b)

Program is

executed

Results are

produced

Object

program

Output

Object

program

Translator

Figure T2.5 The
language translation
process.

general, procedural languages are more like natural language than assembly lan-

guages are, and they use common words rather than abbreviated mnemonics. Because

of this, procedural languages are considered the first level of higher-level languages.

Procedural languages require the programmer to specify—step by step—

exactly how the computer will accomplish a task.A procedural language is oriented

toward how a result is to be produced. Because computers understand only

machine language (i.e., 0’s and 1’s), higher-level languages must be translated into

machine language prior to execution. This translation is accomplished by systems

software called language translators. A language translator converts the high-level

program, called source code, into machine language code, called object code. There

are two types of language translators—compilers and interpreters.

Compilers. The translation of a high-level language program to object code is

accomplished by a software program called a compiler. The translation process is

called compilation.

Interpreters. An interpreter is a compiler that translates and executes one

source program statement at a time. Therefore, interpreters tend to be simpler than

compilers. This simplicity allows for more extensive debugging and diagnostic aids

to be available on interpreters.

Examples of Procedural Languages. FORTRAN (Formula Translator) is an

algebraic, formula-type procedural language. FORTRAN was developed to meet

scientific processing requirements.

COBOL (Common Business-Oriented Language) was developed as a program-

ming language for the business community. The original intent was to make

COBOL instructions approximate the way they would be expressed in English. As

a result, the programs would be “self-documenting.” There are more COBOL pro-

grams currently in use than any other computer language.

Microsoft Visual BASIC is the extension of BASIC programming language.

This language is famous for its graphical user interface and is ideal for creating pro-

totypes. In 2002, Microsoft launched its .NET platform, so that all of its languages,

including Visual BASIC, support this powerful platform. Microsoft’s LINQ (Lan-

guage Integrated Query) is a toolset for .Net framework that lets developers more

easily access data (eWEEK, 2005).

The C programming language experienced the greatest growth of any language

in the 1990s. C is considered more transportable than other languages, meaning that

a C program written for one type of computer can generally be run on another type

of computer with little or no modification. Also, the C language is easily modified.

Other procedural languages are Pascal, BASIC, APL, RPG, PL/1, Ada, LISP, PRO-

LOG, C#, C��, and Delphi. Some of these are used in object-oriented program-

ming (to be described later).

Interpreted Languages. Java, designed by Sun, is now the most popular lan-

guage for Web programming. It also uses an interpreter that translates into a

machine language, called Bytecode. It is very similar to C, but it does not have the

error-prone paint feature.

Nonprocedural Languages: Fourth Generation. Another type of high-level lan-

guage, called nonprocedural or fourth-generation language (4GL), allows the user to

specify the desired results without having to specify the detailed procedures needed

to achieve the results. A nonprocedural language is oriented toward what is

required. 4GLs, also referred to as command languages, greatly simplify and accel-

erate the programming process as well as reduce the number of coding errors.

Natural Programming Languages: Fifth-Generation Languages. Natural
language programming languages (NLPs) are the next evolutionary step and are

T2.16 Technology Guide Software

sometimes known as fifth-generation languages or intelligent languages. Translation

programs to translate natural languages into a structured, machine-readable form

are extremely complex and require a large amount of computer resources. Exam-

ples are INTELLECT and ELF. These are usually front-ends to 4GLs (such as

FOCUS) that improve the user interface with the 4GLs. Several procedural artifi-

cial intelligence languages (such as LISP) are labeled by some as 5GLs. A compar-

ison of the five generations is shown in Table T2.2.

T2.4 Programming Languages T2.17

NEW
PROGRAMMING
LANGUAGES

Several new languages have been developed in the last 10 to 15 years. These lan-

guages were designed to fit new technologies such as multimedia, hypermedia, doc-

ument management, and the Internet. The major new languages are described next.

Object-Oriented Programming Languages. Object-oriented programming
(OOP) models a system as a set of objects. Like structured programming, OOP tries

to manage the behavioral complexity of a system, but it also tries to manage the

information complexity of a system. The object-oriented (OO) approach involves

programming, operating systems environment, object-oriented databases, and a new

way of approaching business applications.

Concepts of the Object-Oriented Approach. The basic concepts of OO are

objects, classes, message passing, encapsulation, inheritance, and polymorphism. Since

these concepts sound very complex and technical at first, it may be helpful to relate

them to aspects of graphical user interfaces in popular operating systems, such as Win-

dows and Mac OS 9 for Apple’s computers. These interfaces were developed through

object-oriented programming, and they incorporate object-oriented features.

Object-oriented systems view software as a collection of interacting objects. An

object models things in the real world. These things may be physical entities such as

cars, students, or events. Or, they may be abstractions such as bank accounts, or

aspects of an interface such as a button or a box to enter text.

When we refer to an object, we can have two possible meanings: a class or an

instance. A class is a template or general framework that defines the methods and

attributes to be included in a particular type of object. An object is a specific

instance of a class, able to perform services and hold data. For example, “student”

may be a class in a student registration system. A particular student, John Kim, can

be an instance of that class, and thus an object.

Objects have data associated with them. The data elements are referred to as

attributes, or as variables because their values can change. For example, the John

Kim object could hold the data that he is a senior, majoring in management infor-

mation systems, and registering for the fall quarter.

TABLE T2.2 Language Generation Table

Features

Portable Use of
Language (Machine Concise Mnemonics
Generation Independent) (One-to-Many) & Labels Procedural Structured

1st—Machine no no no yes yes

2nd—Assembler no no yes yes yes

3rd—Procedural yes yes yes yes yes

4th—Nonprocedural yes yes yes no yes

5th—Natural language yes yes yes no no

Objects exhibit behaviors, which are things that they do. The programmer

implements these behaviors by writing sections of code that perform the methods
of each object. Methods are the procedures or behaviors performed by an object

that will change the attribute values of that object. Methods are sometimes

referred to as the operations that manipulate the object. Common behaviors

include changing the data in an object and communicating information on data

values. By clicking on a “check box” in a Windows system, a user initiates the

behavior that changes the attribute to “checked” and shows an X or check mark

in the box.

Objects interact with each other using messages. These messages represent

requests to exhibit the desired behaviors. The object that initiates a message is the

sender, and the object that receives a message is the receiver.When we interact with

objects, we send messages to them and they may also send messages to us. Clicking

on a button, selecting an item from a menu, and dragging and dropping an icon are

ways of sending messages to objects. These messages may activate methods in the

recipient objects, and in turn new messages may be generated.

Message passing is the only means to get information from an object, because

an object’s attributes are not directly accessible. The inaccessibility of data in an

object is called encapsulation or information hiding. By hiding its variables, an

object protects other objects from the complications of depending on its internal

structure. The other objects do not have to know each variable’s name, the type of

information it contains, or the physical storage format of the information. They only

need to know how to ask the object for information.

With inheritance, a class of objects can be defined as a special case of a more

general class, automatically including the method and variable definitions of the

general class. Special classes of a class are subclasses, and the more general class is

a superclass. For example, the student class is a subclass of human being, which is the

superclass. The student class may be further divided into in-state students, out-of-

state students, or scholarship students, which would be subclasses of the student

class. This type of organization results in class hierarchies.

Inheritance is particularly valuable because analysts can search through prede-

fined class hierarchies, called class libraries, to find classes that are similar to the

classes they need in a new system. This process saves large amounts of time. For

example, if the end user needs to deal with students as a class of objects, the analyst

may be able to find a general class that is similar to the student class as viewed by

the end user. Therefore, the analyst can reuse information from an existing class

instead of starting from the beginning to define a student class. The relationship

between classes and subclasses is shown in Figure T2.6.

Polymorphism is the ability to send the same message to several different

receivers (objects) and have the message trigger the desired action. For example,

suppose that there are three classes of objects in a tuition-and-fee system: in-state

students, out-of-state students, and scholarship students. We must calculate tuition

and fees for all three types of student (classes) while noting that the tuition and fees

will differ for the three classes. Polymorphism allows us to send the same “calculate

tuition and fees” message to these three different classes and have the correct

tuition and fees calculated for each one.

Programming with OO. Building programs and applications using object-oriented

programming languages is similar to constructing a building using prefabricated parts.

The object containing the data and procedures is a programming building block. The

same objects can be used repeatedly, a process called reusability. By reusing program

code, programmers can write programs much more efficiently and with fewer errors.

Object-oriented programming languages offer advantages such as reusable code, lower

T2.18 Technology Guide Software

costs, reduced errors and testing, and faster implementation times. Popular object-ori-

ented programming languages include Smalltalk, C��, and Java.

Smalltalk. Smalltalk is a pure object-oriented language developed at the Xerox

Palo Alto Research Center. The syntax is fairly easy to learn, being much less com-

plicated than C and C��.

C��. C��, is a direct extension of the C language, with 80 to 90 percent of

C�� remaining pure C.

The Unified Modeling Language (UML). Developing a model for complex soft-

ware systems is as essential as having a blueprint for a large building. The UML is a

language for specifying, visualizing, constructing, and documenting the artifacts

(such as classes, objects, etc.) in object-oriented software systems. The UML makes

the reuse of these artifacts easier because the language provides a common set of

notations that can be used for all types of software projects.

Visual Programming Languages. Programming languages that are used within a

graphical environment are often referred to as visual programming languages.

Visual programming allows developers to create applications by manipulating

graphical images directly, instead of specifying the visual features in code.These lan-

guages use a mouse, icons, symbols on the screen, or pull-down menus to make pro-

gramming easier and more intuitive. Visual Basic and Visual C�� are examples of

visual programming languages.

T2.4 Programming Languages T2.19

Figure T2.6 Object classes, subclasses, inheritance, and overriding. (Source: © Courtesy of Apple Corporation.
Used with permission. All rights reserved.)

Employee (Class)

Name (Class variables)

Title

Print (Methods)

Contractor (Subclass of Employee)

Name

Title

Contract_number

Dollar_amount

Print

Paid weekly (Subclass of Employee)

Name

Title

Print

Make_weekly_paycheck

Hourly (Subclass of Paid weekly)

Name

Title

Hourly_wage

Hours_per_week

Print

Make_weekly_paycheck - OVERRIDE

Salaried (Subclass of Paid weekly)

Name

Title

Salary

Print - OVERRIDE

Make_weekly_paycheck - OVERRIDE

WEB
PROGRAMMING
LANGUAGES AND
SOFTWARE

Several languages exist specifically for the Internet. Most notable is HTML.

Hypertext Markup Language. The standard language the Web uses for creating

and recognizing hypermedia documents is the Hypertext Markup Language
(HTML). HTML is loosely related to the Standard Generalized Markup Language

(SGML), which is a method of representing document-formatting languages.

T2.20 Technology Guide Software

Languages such as HTML that follow the SGML format allow document writers to

separate information from document presentation. That is, documents containing

the same information can be presented in a number of different ways. Users have

the option of controlling visual elements such as fonts, font size, and paragraph spac-

ing without changing the original information.

HTML is very easy to use. Web documents are typically written in HTML and

are usually named with the suffix “.html.” HTML documents are standard 7- or 8-bit

ASCII files with formatting codes that contain information about layout (text styles,

document titles, paragraphs, lists) and hyperlinks. The HTML standard supports

basic hypertext document creation and layout, as well as interactive forms, and

defined “hot spots” in images.

Hypertext is an approach to data management in which data are stored in a net-

work of nodes connected by links (called hyperlinks). Users access data through an

interactive browsing system. The combination of nodes, links, and supporting

indexes for any particular topic is a hypertext document. A hypertext document

may contain text, images, and other types of information such as data files, audio,

video, and executable computer programs.

The World Wide Web uses Uniform Resource Locators (URLs) to represent

hypermedia links and links to network services within HTML documents. The first

part of the URL (before the two slashes) specifies the method of access. The second

part is typically the address of the computer where the data or service is located. A

URL is always a single unbroken line with no spaces.

Dynamic HTML is the next step beyond HTML. Dynamic HTML provides

advances that include the following:

• It provides a richer, more dynamic experience for the user on Web pages, making

the pages more like dynamic applications and less like static content. It lets the

user interact with the content of those pages without having to download addi-

tional content from the server. This means that Web pages using Dynamic HTML

provide more exciting and useful information.

• Dynamic HTML gives developers precise control over formatting, fonts, and lay-

out, and provides an enhanced object model for making pages interactive.

• It serves as the foundation for crossware, a new class of platform-independent,

on-demand applications built entirely using Dynamic HTML, Java, and

JavaScript. Netscape Netcaster, a component of Netscape Communicator, is

Netscape’s first crossware application.

Enhancements and variations of HTML make possible new layout and design

features on Web pages. For example, cascading style sheets (CSSs) are an enhance-

ment to HTML that act as a template defining the appearance or style (such as size,

color, and font) of an element of a Web page, such as a box.

XML. XML (eXtensible Markup Language) is optimized for document deliv-

ery across the Net. It is built on the foundation of SGML. XML is a language for

defining, validating, and sharing document formats. It permits authors to create,

manage, and access dynamic, personalized, and customized content on the Web—

without introducing proprietary HTML extensions. XML is especially suitable for

electronic commerce applications. Figure T2.7 compares HTML and XML. XQuery

is an XML query language developed and standardized by the World Wide Web

Consortium (W3C). XQuery is a powerful and convenient language designed for

processing XML data. That means not only files in XML format, but also other data

including databases whose structure is similar to XML. XQuery’s purpose is to find,

retrieve, and rearrange data viewed through the lens of XML. XQuery is the syntax,

and XML experssions are what you write using that syntax (Vasiliev, 2006).

Java. Java is an object-oriented programming language developed by Sun

Microsystems. The language gives programmers the ability to develop applications

that work across the Internet. Java is used to develop small applications, called

applets, which can be included in an HTML page on the Internet. When the user

uses a Java-compatible browser to view a page that contains a Java applet, the

applet’s code is transferred to the user’s system and executed by the browser.

JavaScript. JavaScript is an object-oriented scripting language developed by

Netscape Communications for client/server applications. It allows users to add some

interactivity to their Web pages. Many people confuse JavaScript with Java. There is

no relationship between these two programming languages. JavaScript is a very

basic programming language and bears no relationship to the sophisticated and

complex language of Java.

JavaBeans. JavaBeans is the platform-neutral component architecture for Java.

It is used for developing or assembling network-aware solutions for heterogeneous

hardware and operating system environments, within the enterprise or across the

Internet. JavaBeans extends Java’s “write once, run anywhere” capability to

reusable component development. JavaBeans runs on any operating system and

within any application environment.

ActiveX. ActiveX is a set of technologies from Microsoft that combines differ-

ent programming languages into a single, integrated Web site. Before ActiveX, Web

content was static, two-dimensional text and graphics.With ActiveX,Web sites come

alive using multimedia effects, interactive objects, and sophisticated applications

that create a user experience comparable to that of high-quality CD-ROM titles.

ActiveX is not a programming language as such, but rather a set of rules for how

applications should share information.

ASP. ASP (Active Server Pages) is a Microsoft CGI-like (common gateway

interface) technology that allows you to create dynamically generated Web pages

from the server side using a scripting language. Because ASP can talk to ActiveX

controls and other OLE programs, users can take advantage of many report writers,

graphic controls, and all the ActiveX controls that they may be used to.ASP can also

be programmed in VBScript or JavaScript, enabling users to work in the language

that they are most comfortable with.

T2.4 Programming Languages T2.21

English Text

MNGT 3070

Introduction to MIS

3 semester hours

Professor Smith

 HTML

<TITLE>Course Number</TITLE>
<BODY>

Introduction to MIS

3 semester hours

Professor Smith

</BODY>

 XML

<Department and course=”MNGT 3070”>
<COURSE TITLE>Introduction to MIS<COURSE TITLE>
<HOURS UNIT=”Semester”>3</NUMBER OF HOURS>
<INSTRUCTOR>Professor Smith<INSTRUCTOR>

Figure T2.7 Comparison of HTML and XML.

OTHER SOFTWARE
Of the many other existing types of software, we present just a few.

Dreamweaver. DreamWeaver is an integrated development environment for

developing Web pages. Its good companion is Flash, which can produce sophisti-

cated animated graphics.

Virtual Reality Modeling Language. The virtual reality modeling language
(VRML) is a file format for describing three-dimensional interactive worlds and

T2.22 Technology Guide Software

Most programming is done by taking a large process and breaking it down into

smaller, more easily comprehended modules.This method is commonly described as

top-down programming, stepwise refinement, or structured programming.

Structured programming models a system similar to a layered set of functional

modules. These modules are built up in a pyramid-like fashion, with each layer a

higher-level view of the system. Even with this approach, however, many systems

have developed severe complexity. Thousands of modules with crosslinks among

them are often called “spaghetti code.” The ability to break a programming job into

smaller parts enables the deployment of special productivity tools, the best known

of which is CASE.

T2.5 Software Development and CASE Tools

COMPUTER-AIDED
SOFTWARE
ENGINEERING
TOOLS

Computer-aided software engineering (CASE) is a tool for programmers, systems

analysts, business analysts, and systems developers to help automate software devel-

opment and at the same time improve software quality.

CASE is a combination of software tools and structured software development

methods. The tools automate the software development process, while the method-

ologies help identify those processes to be automated with the tools. CASE tools

often use graphics or diagrams to help describe and document systems and to clar-

ify the interfaces or interconnections among the components (see Figure T2.8).They

are generally integrated, allowing data to be passed from tool to tool.

Categories of Case Tools. CASE tools support individual aspects or stages of the

systems development process, groups or related aspects, or the whole process.

Upper CASE (U-CASE) tools focus primarily on the design aspects of systems

development, for example, tools that create data flow or entity-relationship dia-

grams. Lower CASE (L-CASE) tools help with programming and related activities,

such as testing, in the later stages of the life cycle. Integrated CASE (I-CASE) tools

incorporate both U-CASE and L-CASE functionality and provide support for

many tasks throughout the SDLC.

CASE tools may be broken down into two subcategories: toolkits and work-

benches. A toolkit is a collection of software tools that automates one type of soft-

ware task or one phase of the software development process. A CASE workbench
is a collection of software tools that are interrelated based on common assumptions

about the development methodology being employed. A workbench also uses the

objects. It can be used with the Web to create three-dimensional representations of

complex scenes such as illustrations, product definitions, and virtual reality presen-

tations. VRML can represent static and animated objects and it can have hyperlinks

to other media such as sound, video, and image.

Web Browsers. The major software tool for accessing and working with the Web

is the Web browser. It includes a point-and-click GUI that is controlled via a mouse

or some keyboard keys. Browsers can display various media and they are used also

to activate the hyperlinks. Microsoft’s Explorer is the major browser.

E-Mail. E-mail software allows users to send and receive e-mail messages over the

Internet. These packages typically include an address book that stores frequently

used e-mail addresses. They also include blockers of unwanted mail and many other

features.

data repository containing all technical and management information needed to

build the software system. Ideally, workbenches provide support throughout the

entire software development process and help produce a documented and exe-

cutable system.

CASE tools have several advantages:

• CASE improves productivity by helping the analyst understand the problem and

how to solve it in an organized manner.

• CASE facilitates joint application and design (JAD) sessions, resulting in better

interaction among users and information systems professionals.

• CASE makes it easier to create prototypes, so that users can see what they are

going to get at an early stage in the development process.

• CASE makes it easier to make system design changes as circumstances change.

Because most CASE tools are graphical in nature and have the ability to pro-

duce working prototypes quickly, nontechnically trained users can participate more

actively in the development process. They can see what the completed system will

look like before it is actually constructed, resulting in fewer misunderstandings and

design mistakes.

Using CASE can help make revising an application easier. When revisions

are needed, one need only change specifications in the data repository rather

than the source code itself. This also enables prototype systems to be developed

more quickly and easily. Some CASE tools help generate source code directly,

and the benefits can be significant.

CASE tools also have disadvantages. A lack of management support for CASE

within organizations can be a problem. CASE is very expensive to install, train

developers on, and use properly. Many firms do not know how to measure quality

or productivity in software development and therefore find it difficult to justify the

T2.5 Software Development and CASE Tools T2.23

Figure T2.8 A CASE
display.

expense of implementing CASE. In addition, the receptivity of professional pro-

grammers can greatly influence the effectiveness of CASE. Many programmers who

have mastered one approach to development are hesitant to shift to a new method.

Broadly speaking, there are two main approaches to systems development—

namely, a structured approach and an object-oriented approach. Similarly, CASE

tools have two broad types: One supports a structured approach (e.g.,Visio-Systems

Architect); the second supports an object-oriented approach (e.g., IBM’s Rational

Rose, Borland’s Together, and Visual Paradigm).

Also, the insistence on one structured method in a CASE program is good for

standardization but can be stifling for creativity and flexibility. If an analyst is in an

organization that does not use a structured methodology to accompany CASE, then

the effectiveness of CASE will be greatly reduced. Creating software often entails

imaginative solutions to procedural problems; being constrained to one methodol-

ogy and the tools included in the CASE package can feel constricting. Finally, CASE

tools cannot overcome poor, incomplete, or inconsistent specifications. Table T2.3

lists the major tools of CASE.

T2.24 Technology Guide Software

TABLE T2.3 The Major Tools of CASE

Category Comments

Analysis and design tools

Code or application generators

Prototyping tools

Programming language support

Testing tools

Problem-tracking tools

Change management/version control tools

Project management tools

Estimation tools

Documentation generators

Reverse engineering tools

Business process reengineering tools

• Create data flow, entity-relationship, etc. diagrams

• Generic, or specific to proprietary systems design methodologies

• Some convert specifications directly into code

• Often have drag-and-drop capabilities for developing applications

and interfaces

• Screen and menu generators

• Report generators/4GLs

• Templates for common code sequences in specific languages

• Subroutine libraries for common functions

• Produce data for testing programs

• Monitor program execution

• Check systems analysis diagrams for completeness and consistency

• Identify responsibility for fixing bugs and track progress in solving

them

• Repository of different versions of code, with “check out” and

“check in” capabilities

• Allow access only to authorized personnel

• Maintain information on changes between versions of programs

• Critical path method (PERT charts)

• Gantt charts

• Time and expense tracking

• Estimate personnel requirements and costs for systems develop-

ment projects

• Create flowcharts, other documentation for systems with poor or

no documentation

• Help restructure code in legacy systems

• Analyze and improve existing processes

• Design new processes

T2.6 Software Issues and Trends T2.25

SOFTWARE
EVALUATION AND
SELECTION

There are dozens or even hundreds of software packages to choose from for almost

any topic. The software evaluation and selection decision is a difficult one that is

affected by many factors. Table T2.4 summarizes these selection factors. The first

part of the selection process involves understanding the organization’s software

needs and identifying the criteria that will be used in making the eventual decision.

Once the software requirements are established, specific software should be evalu-

ated. An evaluation team composed of representatives from every group that will

have a role in building and using the software should be chosen for the evaluation

process. The team will study the proposed alternatives and find the software that

promises the best match between the organization’s needs and the software capa-

bilities. (Software selection becomes a major issue in systems development and is

discussed further in Chapter 15.)

SOFTWARE
LICENSING

Vendors spend a great deal of time and money developing their software products.

To protect this investment, they must protect their software from being copied and

distributed by individuals and other software companies. A company can copyright
its software, which means that the U.S. Copyright Office grants the company the

exclusive legal right to reproduce, publish, and sell that software.

The Software and Information Industry Association (SIIA) enforces software

copyright laws in corporations through a set of guidelines. These guidelines state

that when IS managers cannot find proof of purchase for software, they should get

The importance of software in computer systems has brought new issues and trends

to the forefront for organizational managers.These issues and trends include software

evaluation and selection, software licensing, software upgrades, software defects, mal-

ware and pestware, open systems, open source software, shareware, componentware,

software piracy, services-oriented architecture, and autonomic computing.

T2.6 Software Issues and Trends

TABLE T2.4 Software Selection Factors

Factor Considerations

Size and location of user base

Availability of system

administration tools

Costs—initial and subsequent

System capabilities

Existing computing

environment

In-house technical skills

Does the proposed software support a few users in a

single location? Or can it accommodate large num-

bers of geographically dispersed users?

Does the software offer tools that monitor system

usage? Does it maintain a list of authorized users

and provide the level of security needed?

Is the software affordable, taking into account all costs,

including installation, training, and maintenance?

Does the software meet both current and anticipated

future needs?

Is the software compatible with existing hardware,

software, and communications networks?

Should the organization develop software applications

in-house, purchase off the shelf, or contract software

out of house?

rid of the software or purchase new licenses for its use. A license is permission

granted under the law to engage in an activity otherwise unlawful. The SPA audits

companies to see that the software used is properly licensed. Fines for improper

software are heavy. IS managers are now taking inventory of their software assets

to ensure that they have the appropriate number of software licenses.

Although many people do so, copying software is illegal. The Software Publish-

ers Association has stated that software piracy amounts to approximately $8 billion

annually worldwide. Types of software piracy include: “softlifting”; unrestricted

client access; hard-disk loading; OEM piracy/unbundling; commercial use of non-

commercial software; counterfeiting; CD-ROM piracy; Internet piracy; sale of over-

runs by manufacturing plants; and renting.

Software developers, failing to recoup in sales the money invested to develop

their products, are often forced to curtail spending on research and development.

Also, smaller software companies may be driven out of business, because they can-

not sustain the losses that larger companies can. The end result is that innovation is

dampened and consumers suffer. Consumers also pay higher prices to offset the

losses caused by software piracy.

Another association that was created to protect the interests of large software

developers is the Business Software Alliance (BSA). Any infringer is liable to pros-

ecution by the local government, and any person who gives the information to

report such crimes would get a reward from the BSA of up to US$14,000 for each

pirated software (bsa.org).

As the number of desktop computers continues to increase and businesses con-

tinue to decentralize, it becomes more and more difficult for IS managers to man-

age their software assets. As a result, new firms have sprouted up to specialize in

tracking software licenses for a fee. Firms such as ASAP Software, Software Spec-

trum, and others will track and manage a company’s software licenses, to ensure that

company’s compliance with U.S. copyright laws.

T2.26 Technology Guide Software

SOFTWARE
UPGRADES

Another issue of interest to organizational management is software upgrades (also

known as software maintenance). Software vendors revise their programs and sell

new versions often. The revised software may offer valuable enhancements, or, on

the other hand, it may offer little in terms of additional capabilities. Also, the revised

software may contain bugs.

Deciding whether to purchase the newest software can be a problem for organ-

izations and their IS managers. It is also difficult to decide whether to be one of the

first companies to buy and take strategic advantage of new software before com-

petitors do, but risk falling prey to previously undiscovered bugs.

SOFTWARE
DEFECTS

Good software is usable, reliable, defect free, cost effective, and maintainable. How-

ever, all too often, computer program code is inefficient, poorly designed, and rid-

dled with errors. Software defects have wrecked a European satellite launch,

delayed the opening of Denver International Airport for a year, and destroyed a

NASA Mars mission. In another example, on the same day that Microsoft first

released Windows XP, the company posted 18 megabytes of patches on its Web site:

bug fixes, compatibility updates, and enhancements.

With our dependence on computers and networks, the risks are getting worse.

According to the Software Engineering Institute (SEI), professional programmers

make on average 100 to 150 errors in every thousand lines of code they write.

Using SEI’s figures, Windows XP, with its 41 million lines of code, would have over

4 million bugs.The industry recognizes the problem, but the problem is so enormous

that only initial steps are being taken. One step is better design and planning at the

beginning of the development process.

T2.6 Software Issues and Trends T2.27

MALWARE
On many computers one can find software that is running without the knowledge of

the computers’ owners. Such types of software are known as malware. It is installed

by vendors who want to find information about you. A well-known type of such

software is spyware (see Chapter 16). These types of software use up valuable

resources and can slow down your computer.

OPEN SYSTEMS
The concept of open systems refers to a model of computing products that work

together. Achieving this goal is possible through the use of the same operating sys-

tem with compatible software on all the different computers that would interact

with one another in an organization. A complementary approach is to produce

application software that will run across all computer platforms. If hardware, oper-

ating systems, and application software are designed as open systems, the user would

be able to purchase the best software for the job without worrying whether it will

run on particular hardware. As an example, much Apple MacIntosh application

software would not run on Wintel (Windows-Intel) PCs, and vice versa. Neither of

these would run on a mainframe.

Certain operating systems, like UNIX, will run on almost any machine. There-

fore, to achieve an open-systems goal, organizations frequently employ UNIX on

their desktop and larger machines so that software designed for UNIX will operate

on any machine. Recent advances toward the open-systems goal involve using the

Java language, which can be run on many types of computers, in place of a tradi-

tional operating system.

OPEN SOURCE
SOFTWARE

Open systems should not be confused with open source software. Open source soft-
ware is software made available in source code form at no cost to developers. There

are many examples of open-source software, including the GNU (GNU’s Not

UNIX) suite of software (gnu.org) developed by the Free Software Foundation

(fsf.org); the Linux operating system; Apache Web server (apache.org); sendmail

SMTP (Send Mail Transport Protocol) e-mail server (sendmail.org); the Perl pro-

gramming language (perl.com); the Netscape Mozilla browser (mozilla.org); and

Sun’s StarOffice applications suite (sun.com).

Open source software is, in many cases, more reliable than proprietary software.

Because the code is available to many developers, more bugs are discovered, are dis-

covered early and quickly, and are fixed immediately. Support for open source software

is also available from companies that provide products derived from the software, for

example, Red Hat for Linux (redhat.com).These firms provide education, training, and

technical support for the software for a fee.

Linux has been used to create the astounding effects for the movie Lord of the
Rings. More than 200 workstations and 450 dual-processor servers run on Red Hat

Linux 7.3 to identify system resources and distribute rendering jobs like shadows

and reflections, across idle processors to speed up scene creation.

If Linux is to become an enterprise-class operating system, it needs to be devel-

oped and tested with enterprise-class machines.The Linux developer community has

always had the know-how but not the hardware resources. Open Source Develop-

ment Lab (OSDL) solves this problem. It provides an independent Linux software

development laboratory where developers can create and test applications that run

on high-end servers.

Open source code is becoming a corporate building block. Some companies have

already taken the steps to transition to use open source software like Apache Web

Server, FastCGI scripting language, FreeBSD or Linux operating system, Zope appli-

cation server, OpenNMS, Velocity, MySQL, InterBase, PostgreSQL database, Enhy-

dra, Tomcat, and Samba file integration system. Other examples are: Apple’s Davin-

ports at 2000; IBM’s Derby Cambas’s development platform; Mono’s development

platform; php; Open Office; Firefox; BEA’s Beehive; and several other applications

(osdir.com/Downloads.phtml). One reason for this is the new programmers find it

very difficult to follow what the previous programmers have done if they do not use

open source software. Another reason is outage rate of open source is lower than the

proprietary code. Besides, open source code receives enthusiastic cooperation from

some of the largest software vendors like IBM and Oracle. In terms of security and

stability, open source code is better because many people can search its problem so that

hidden problems can be eradicated earlier than those of the proprietary code. In addi-

tion to this, some entrepreneurs are afraid of being locked in by the proprietary code.

Open source software is produced by vendors but is often produced by groups

of volunteers. It is normally distributed for little or no cost by distributors who hope

to make money by providing training, consulting work, add-on products, and custom

software. Initially, it was perceived as unreliable and not a viable alternative to pro-

prietary software produced by large firms with a strong reputation and with signifi-

cant financial and people resources. Linux has broken this perception rule that has

proven this by using open source software; companies can save significant money

without compromise on quality, support and future enhancements.

There are positives and negatives of the success of open source software. Posi-

tives include quality and reliability, the rapid release schedules of projects, and the

reduced costs of development and ownership. The negatives are that it is an over-

hyped strategy employed by the weak to compete with the strong. In terms of secu-

rity, open source can enable developers to find the bugs or vulnerabilities in their

programs. On the negative side, open source may allow hackers to know about the

weaknesses or loopholes of the software more easily than closed-source software.

There is also disagreement from the research firms: IDG found that Linux was

growing from strength to strength in Asia but GartnerGroup found that Linux

shipments to Asia remain very tiny and the little growth rate cannot threaten

Microsoft’s dominance.

Openness has taken a great stride forward. W3C has recently issued a new draft

of its patented policy recommending that patented technologies be allowed only in

Web standards when royalty-free. On the other hand, Microsoft announced that

they would document and allow free use of its Windows 2000 Kerberos extensions.

Sun has also taken similar steps by undergoing a major revision on the agreement

on how third parties must implement Java standards.

T2.28 Technology Guide Software

SHAREWARE AND
FREEWARE

Shareware is software where the user is expected to pay the author a modest

amount for the privilege of using it. Freeware is software that is free. Both help to

keep software costs down. Shareware and freeware are often not as powerful (do

not have the full complement of features) as the professional versions, but some

users get what they need at a good price. These are available now on the Internet in

large quantities (download.com). A deficiency of such software is the possible intro-

duction of viruses or spyware. Some popular packages are: WinZip, Adobe Reader,

Mozilla, Zero Pop-up and KaZaa.

References T2.29

SOFTWARE PIRACY
As discussed earlier, the issue of software piracy is critical to the advancement of

software and the ability to innovate and improve software. According to the Busi-

ness Software Alliance, the damage to the industry from illegal copying of software

is about $20 billion a year. For a discussion, see Online Chapter 17.

SERVICES-ORIENTED
ARCHITECTURE
(SOA)

Services-oriented architecture (SOA) is a framework for constructing and interlink-

ing a company’s back-end systems in order to make the computing systems more

flexible and cost-effective. SOA communications, enabled by Web Services, are dif-

ferent from existing middleware. Under SOA and Web Services, applications auto-

matically link to one another as needed, which is the concept of “loose coupling.”

AUTONOMIC
COMPUTING

As systems become more interconnected and diverse, systems architects are less

able to anticipate and design interactions among components. Autonomic comput-
ing refers to computing systems that can manage themselves given high-level objec-

tives from administrators. It gets its name from the autonomic nervous system that

governs our heart rate and body temperature, thus freeing our conscious brain from

the burden of dealing with these and many other low-level functions. An autonomic

computing system consists of myriad interacting, self-governing components that in

turn comprise large numbers of interacting, autonomous, self-governing compo-

nents at the next level down.

VIRTUALIZATION
Computers no longer have to be dedicated to a particular task. Applications and

users can share computing resources, remaining unaware that they are doing so.

Companies can shift computing resources around to meet demand at a given time,

and get by with less infrastructure overall (Henrie, 2006).

VMware provides tools that manage VMware products. VMware specializes in

a variety of virtual infrastructure, ranging from virtual servers to virtual network

devices, including switches. VMware also creates virtual servers that run the gamut

of operating systems, from Windows to Linux to NetWare (VMware.com, 2006).

HP rolled out new software and services designed to simplify the management

of virtualized environments and further the integration between its legacy platforms

and Integrity line of servers. (Burt, 2005)

Babcock, C., “Open Source Code Is Becoming a Corporate Building

Block,” Interactive Week, May 14, 2001.

Barker, J., Beginning Java Objects: From Concepts to Code. Birming-

ham: Wrox Press, 2000.

Berr, J., “AOL, Microsoft, Yahoo Band to Block Spam,” Honolulu
Advertiser, April 29, 2003.

“Best-Practice Case Studies—UPS for Parcel Shipment and Tracking,”

mobileinfo.com/Case_Study/ups.htm, 2001.

Burt, J., “HP Expands Virtualization Offerings,” eWeek, September 12,

2005.

Dahl, E., “Fee vs/. Free Software,” PCWorld, March 2002.

Dallas, D.A., “Information Systems Executive Journal,” Linux: A Cost-
Effective Alternative to Windows, Spring 2002.

Deckmyn, D., and J. Vijayan, “Linux Applications Make Leap to Unix,”

Computerworld, August 21, 2000.

Dick, K., XML: A Manager’s Guide. Reading, MA: Addison-Wesley, 2000.

eWeek, “Sun Microsystems Solaris 10,” September 18, 2005.

eweek.com/article2/0,1759,1774989,00.asp (accessed October 2006).

Foley, J., “Information Week,” Internet Week, Mar 13, 2003.

Grimes, B., “Linux Goes to the Movies,” PC, May 27, 2003.

Grossman, L., “The Browser That Roared,” Time, May 13, 2002.

Henrie, K. S., “Virtualization Can Save Departments, Not Just Servers,”

CIO Insights, January 6, 2006, cioinsight.com/article2/0,1540,1914946,
00.asp (accessed October 2006).

Kephart, J., and D. M. Chess, “The Vision of Autonomic Computing,”

IEEE, January 2003.

LaMonica, M.,“Services-Oriented Architecture Gains Support,” CNET
News.com, April 1, 2004.

Leganza, G., “Top-Down versus Bottom-Up: Approaches to Enterprise

Architecture,” forrester.com, March 29, 2004.

McDonald, A. B., “The Next Best Thing to Being There,” PCWorld,

April 2002.

References

T2.30 Technology Guide Software

Spanbauer, S., “Linux Bulks Up,” Business2.com, November 28, 2000.

“3-D Technology Gives HMV.com Shoppers ‘Sneak Peek’ into New

Music Releases,” Stores, October 2001.

Test Center, “Sophisticated Simplicity–Oracle Database 10g Stresses

Easier Administration,” Infoworld, March 22, 2004.

Vasiliev,Y.,“Querying, Constructing, and Transforming XML with Oracle

XQuery,” Oracle.com, February 2006, oracle.com/technology/pub/
articles/vasilive_xquery.html (accessed October 2006).

VMware.com,“eWEEK Named VMware Workstation a Top Product of

2005,” September 18, 2005, vmware.com/news/releases/ws_eweek_
award.html (accessed October 2006).

Von Hippel, E., “Learning from Open-Source Software,” MIT SLOAN
Management Review, Summer 2001.

“Welcome Steps Toward Openness,” eWeek, March 18, 2002.

“Open Source Software: Investigating the Software Engineering,

Psychosocial, and Economic Issues,” Information Systems Journal,
2001.

PCWorld.com, “Features Comparisons—Free and Paid Software,”

March 2002.

Reed, D. A., “Grids, the TeraGrid, and Beyond,” IEEE, 2003.

Rupley, S., “Apple’s Next Moves,” PC, June 30, 2002.

Schwartz, K. D., “EVault Upgrades Backup, Recovery Offerings,”

eWeek, April 11, 2005.

Shelly, G. B., et al., Microsoft Windows 2000: Complete Concepts and
Techniques. Cambridge, MA: Course Technology Inc., 2000.

Simonds, C., “Software for the Next-Generation Automobile,” IEEE,
November–December 2003.

Smith, S., “The Whiteboard Goes Digital,” Laptop, May 2003.

